E-CAFÉ **#2** ALLICE

High temperature heat pump

ALLICE e-café #1

Rules and objectives of the e-café

- Please turn off your micro during the presentation phase (first 30min)
- Camera and micro on for the networking phase

- Get some insights from the presentation
- Meet other participants interested by the topic
 - Exchange email addresses
 - Make further appointment to discuss partnership, project...

Agenda

Welcome and ALLICE introduction (5min)

PUSH2HEAT project presentation

Laura Alonso Ojanguren, Tecnalia

Léo Pasquier, ALLICE

SPH technology and first references

Franz Helminger, SPH

Networking (2x10min)

Facilitators: ALLICE team

ALLICE e-café #1

Alliance ALLICE

Federate and innovate to decarbonise industry

Our missions

- ✓ Bringing together all the players in the sector to innovate collectively in order to decarbonise the industry
- Supporting the development of a range of high-performance, differentiating decarbonisation solutions in France and abroad
- Supporting manufacturers in accelerating their decarbonisation

Our structure

- ✓ Funding mostly coming from members' fees
- ✓ An independent animation structure
- A Governance that meets members' needs and provides a strategic vision of the challenges facing the industry
- A network of over 120 members and partners

Our founders and shareholders Image: Comparison of the state I

Our activities

Collective studies & monitoring

Coordination of the ALLICE network

Promoting the decarbonisation sector

Prestations & speeches

ALLICE e-café #1

High temperature heat pumps

ANNEX 558 High-Temperature Heat Pumps

This Annex gives an overview of available technologies and close-to-market technologies regarding high-temperature heat pumps. The need for further RD&D developments will be outlined. In order to maximize the impact of high-temperature heat pumps, this Annex also looks at process integration by development of concepts for heat pump-based process heat supply and the implementation of these concepts.

Push2Heat

PUSH2HEAT PROJECT

Event: ALLICE e-café / High Temperature Heat Pump

Speaker: Laura Alonso Ojanguren (TECNALIA)

Date: 23rd May 2025

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

Context and motivation behind PUSH2HEAT

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

DPush2Heat

Decarbonisation of industry

A huge challenge... and urgent!

Energy efficiency

Essential role for decarbonising industrial processes.

Waste heat recovery and revalorisation plays a key role.

Electrification

Powered by low-carbon electricity, can provide process heat with net-zero emissions.

- Heat pumps
- MVR
- Electric heaters/boilers

Renewable energy

For thermal and/or electrical energy supply to industries.

- Self-generated biogas (anaerobic digestion)
- Solar technologies
- Others

Alternative fuels

Use of biomass, hydrogen or other carbon-neutral fuels.

The role of high temperature heat pumps

Source: High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland. Obrist et.al (2023)

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the

Funded by the European Union granting authority can be held responsible for them.

The role of high temperature heat pumps

Market potential is huge:

- 37% of the process heat required by the European industry is below 200 °C (730 TWh/year)
- Available waste heat between 40-100 ^oC is estimated in 220 TWh
- Highest potential in the food, paper and chemical industry

... but still the actual market is emerging

the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Source: An estimation of the European industrial heat pump market potential. Marina, A. et al (2021)

PUSH2HEAT Project

the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

\Rightarrow

PUSH2HEAT main objectives

TECHNOLOGY RELATED OBJECTIVES:

 Optimization of four heat upgrade technologies

MARKET/BUSINESS RELATED OBJECTIVES:

 Pushing forward the market potential, new business models and actions towards technologies market deployment Demonstration of four full-scale pilot plants in different industrial applications:

- Waste heat~ 40-90 °C
- Heat supply- 100-160 °C
- System size: 0,5 1 MW

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the

Funded by the European Union granting authority can be held responsible for them.

DEMO 1: Paper industry

Felix Schoeller GmbH & Co. KG (Germany)

Location	Weissenborn, Germany	
Sector	Paper industry	
Plant owner	Felix Schoeller GmbH & Co. KG	
Technology	HTHP with reciprocating piston compressor (by SPH)	
Waste heat source	Exhaust heat from the paper machine dryer: water glycol circuit from the exhaust humid air heat recovery circuit (30-50 °C)	
Heat supply	Low pressure steam at 2,3 bar(a) (123 °C)	
HTHP Unit	1.2 MW; expected COP: 2.3	

Production plant in Weissenborn, Germany (Felix Schoeller GmbH & Co. KG)

the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

DEMO 2: paper industry Cartiere di Guarcino (Italy)

Location	Lazio, Italy	
Sector	Paper industry – CHP plant	
Plant owner	Cartiere di Guarcino	
Technology	HTHP (by CANNON BONO) + MVR	
Waste heat source	Cooling water of the cogeneration plant (85-90 ^oC)	
Heat supply	Low pressure steam by HTHP: - 1180 kg/h at 1.7 bar(a) (115 °C) - Recompression to 6,5 bara (162 °C)	
HTHP Unit	855 kW; expected COP: 3	

Cartiere di Guarcino plant in Lazio, Italy

Funded by the European Union. Views and opinions expressed are however those of the author(s only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

DEMO 3: paper industry Cuartiere di Guarcino (Italy)

Location	Lazio, Italy	
Sector	Paper industry – CHP plant	
Plant owner	Cuartiere di Guarcino	
Technology	Absorption Heat Transformer (AHT) (by BS-NOVA) Working fluid: H2O/LiBr	
Waste heat source	Cooling water of the cogeneration plant (85-90 °C)	
Heat supply	Low pressure steam by the AHT at 3.3 bar(a) With +14.5 bar(a) steam and thermocompressor → upgraded steam at 6,5 bar(a)	
AHT Unit	340 kW, thermal efficiency: 0.48, expected COP _{el,system} : 25-35	

Cuartiere di Guarcino plant in Lazio, Italy

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

DEMO 4: R&D plant (Belgium) QPinch facilities

Location	Antwerp (Belgium)	
Sector	R&D plant focused to chemical industry	
Plant owner	QPinch	
Technology	Thermochemical Heat Transformer (by QPINCH)	
Waste heat source	Waste heat between 60-90 °C	
Heat supply	Process heat as hot water or steam at 110- 150 °C	
HTHP Unit	1 MW	

the European Union

Funded by the European Union. Views and opinions expressed are however t only and do not necessarily reflect those of the European Union or the Europ Infrastructure and Environment Executive Agency (CINEA). Neither the Europ granting authority can be held responsible for them.

2 MW R&D Plant at Qpinch

�

More information

- Visit our website: <u>https://push2heat.eu/</u>
- Follow us on Linkedin (<u>Push2Heat</u>) and X (<u>PUSH2HEAT_EU</u>)
- Interested in receiving periodic information on the progress of PUSH2HEAT? Join our Stakeholder Network <u>here</u>
- **Open Call for Experts:** Apply to the Push2Heat's External Advisory Board <u>here</u>
- We are open to hear you! Any input, recommendation, (positive/negative) experiences, needs... will be very valuable to steer the Project in the good direction and generate interesting results for the value chain of industrial heat upgrade systems

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

www.push2heat.eu

Follow Push2Heat online

to stay up-to-date with the project's developments

In

You

Tube

Thank you!

Laura Alonso TECNALIA laura.alonso@tecnalia.com

the European Unior

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

고 Push2Heat

linktr.ee/push2heat

Company presentation

History

2020 Founded

- 2021 European Family Office Invests
- 2022 Compressor, heat pump and test facility development

2023 Awarded

2023 First ThermBooster to industry
2024 Spirax Group Strategic investor
2025 10+ units will be in operation

Dr. Tim Hamacher

Andreas Mück

SPH – High-temperature – Piston compressor

Advantages

Patented

Developed for ultra-high temperature heat pumps Very high efficiency Very good speed-controlled partial load capability High temperature lifts even in part load Optimised for synthetic and natural refrigerants Robust industrial design (>250 °C)

Boosting Waste heat temperature

Heat source 8 – 120 °C

Cooling water typ. 30 – 90 °C

Heat recovery typ. 30 – 120 °C

Condensate cooling typ. 50 – 90 °C

Machine waste heat typ. 50 – 90 °C

Process waste heat typ. 50 – 120 °C

Waste heat from chillers typ. 15 – 40 °C

Solar thermal energy typ. 30 – 90 °C

District heating Typ. 50 – 120 °C

Heat sink 80 – 180 °C

Hot water typ. 90 – 180 °C

Thermal oil typ. 100 – 180 °C

Feed water preheating typ. 100 – 180 °C

Saturated steam typ. 110 – 175 °C

Air heating typ. 90 – 170 °C

Warm water typ. 80 – 120 °C

Maximum temperature for your process

	ر 210 °C							
	180 °C -	SPH Therr	nBooster™ + a	dditional tech	nologies			
ige neat sink ess heat)	150 °C - 120 °C -	SPH Therr or with nat	nBooster™ witł tural refrigerant	n synthetic re s (HC)	frigerants (HF	0)		
erature rar sable proc	90°C -		Few					
empe (u:	60 °C -	Standard	provide	ers				
_	30 °C -	pumps						
	0°C +					110.00	100 %0	
	0°(5 50	Temperature r	ange heat so	90 °C urce (waste he	eat)	C	

6

Customised industrial high-temperature heat pump

Medium heat source	Water, Water-Glycol, Thermal oil, Steam	
Temperature heat source	8 up to 120 °C	
Medium heat sink	Water, Thermal oil, Steam	
Temperature heat sink	Up to 180 $^{\circ}$ C (higher with additional technologies)	
Temperature lift per stage	Up to 80 K	
Design	1- or 2-stage	
Cooling circuits	1 or 2, Serial / Parallel	
Refrigerant	HFO and natural hydrocarbons	
GWP	1 – 9, max. < 20	
Capacity per module	300 kW up to 2.5 MW per boundary conditions	
Modular	Up to 5-10 MW	
Power control	30 % up to 100 % stepless per compressor	
Heat exchanger	Plate / Tube bundle / Plate & Shell	
Control / Communication	S7, SG-ready, Remote maintenance	

ThermBooster Liquid Liquid

Heat source medium water | water glycol | thermal oil | steam Heat sink medium water | thermal oil Modular principle enables customer-specific customisation Decentralised process connection Flexible placement thanks to modular design Increased performance with up to 3 parallel compressors 180 °C supply temperatures 2-stage configuration for highest temperature lifts

Liquid Steam

Heat source medium water | water glycol | thermal oil | steam Heat sink medium steam Modular principle enables customer-specific customisation

Modular principle enables customer-specific customisation

Decentralised process connection

Flexible placement thanks to modular design

Increased output thanks to up to 3 parallel compressors

Directly integrated saturated steam generator

Slightly superheated steam optional

Steam up to 7 bara, 175 °C

2-stage configuration for maximum temperature lifts Additional heat extraction for feed water preheating

Demonstration and test system

ThermBooster	LS1
System	1-stage
Refrigerant	R1233zd
Commissioning	2023
Medium Heat Source	Water
Heat Source	85/70 °C
Medium Heat Sink	Steam
Heat Sink	90/120 °C, 2 bara
Heat capacity	514 kW
Cooling capacity	407 kW
Electrical power	118 kW
СОР	4.4
Heat generation	4.1 GWh / a
Decarbonisation	550 t CO ₂ / a

Exemplary design Gelatine production

Thermoplastics - Netherlands

ThermBooster	2 x LL2
System	1-stage
Refrigerant	R1233zd
Commissioning	Q1/2 2023
Medium Heat Source	Water
Heat Source	75/65 °C
Medium Heat Sink	Water
Heat Sink	90/130 °C
Heat capacity	1,017 kW
Cooling capacity	809 kW
Electrical power	229 kW
СОР	4.4
Heat generation	10.8 GWh / a
Decarbonisation	2,400 t CO ₂ / a

6

Push2Heat Paper drying - Germany

ThermBooster	LS2 - 2
System	2-stage
Refrigerant	R515B/R1233zd
Commissioning	Q2/2025
Medium Heat Source	Water-Glycol
Heat Source	46/41 °C
Medium Heat Sink	Steam
Heat Sink	103/123 °C, 2.2 bara
Heat capacity	1,180 kW
Cooling capacity	690 kW
Electrical power	520 kW
СОР	2.27
Heat generation	7.1 GWh / a
Decarbonisation	1,420 t CO ₂ / a

Felix Schöller paper mill in Weißenborn Container installation next to the building

Hot. Efficient. Green.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Aluminium coating - Spain

ThermBooster	2x LS2
System	1-stage
Refrigerant	R1336mzzZ
Commissioning	Q1/2025
Medium Heat Source	Water
Heat Source	92/84 °C
Medium Heat Sink	Steam
Heat Sink	90/159 °C, 6 bara
Heat capacity	2x 706 kW
Cooling capacity	2x 572 kW
Electrical power	2x 231 kW
СОР	3.0
Heat generation	8.4 GWh / a
Decarbonisation	1,700 t CO ₂ / a

5

AHEAD - Pharmaceuticals - Austria

All systems are based on natural refrigerants \rightarrow ThermBooster Butane 0 % CO₂ emissions for up to 7 months a year (no use of fossil fuels) Up to 90 % CO₂ reduction on the production side

AHEAD - Pharmaceuticals - Austria

ThermBooster	LS2
System	1-stage+ MVR
Refrigerant	Butane
Commissioning	Q1/2025
Medium Heat Source	Water
Heat Source	70/65 °C
Medium Heat Sink	Steam
Heat Sink	90/115 °C, 1.67 bara 195 °C, 11 bara
Heat capacity	1,270 kW 1,561 kW
Cooling capacity	1,030 kW
Electrical power	300 kW 372 kW
СОР	4.3 2.3
Heat generation	7.2 GWh / a
Decarbonisation	1,440 t CO ₂ / a

Chemical industry - Austria

ThermBooster	LL1
System	1-stage
Refrigerant	R1233zd
Commissioning	Q3/2025
Medium Heat Source	Water-Glycol
Heat Source	70/60 °C
Medium Heat Sink	Thermal Oil
Heat Sink	130/140 °C
Heat capacity	290 kW
Cooling capacity	212 kW
Electrical power	95 kW
СОР	3.0
Heat generation	1.7 GWh / a
Decarbonisation	350 t CO ₂ / a

Bioplastics - Germany

ThermBooster	LS1
System	1-stage
Refrigerant	Pentane
Commissioning	Q1/2026
Medium Heat Source	Water
Heat Source	88/83 °C
Medium Heat Sink	Steam
Heat Sink	120/126 °C, 2.4 bara
Heat capacity	361 kW
Cooling capacity	296 kW
Electrical power	72 kW
СОР	5.0
Heat generation	2.2 GWh / a
Decarbonisation	435 t CO ₂ / a

6

We have the solutions – Let's implement them together!

Thank You!

Franz Helminger franz.helminger@spheat.de +49 2206 90506 - 69

www.spheat.de

Networking

- First round of mix & match:
 - Small breakout rooms (5 people max) for 10min
 - Short round of introduction: answer the questions
 - Open discussion in each small group
- Second round
- Optional: <u>Leave your coordinates in the Excel</u> of the Teams meeting:
 - First Name / Name / Company / e-mail / Reason to be contacted*
 *Examples: looking for a partner for a European project, looking for an expert in this sector, looking for feedback on this technology/use case, looking for
 - This file can be filled and consulted afterwards, by any attendee
- Conclusion of the e-café

Picture time

*We will use this picture to communicate on LinkedIn

ALLICE e-café #1

Round of introduction (~1'30" per participant)

- Name and company, position
- What interests you about high temperature HP?
- What do you expect from this e-café ? Examples: monitoring technology, identifying partners, proposing my solution(s), identifying experts, etc.

Timing : 10' in the breakout room

ALLICE 3rd congress

Face-to-face event

- The right balance between innovative technologies and practical applications in industry
- A **cross-sectoral** approach that facilitates the sharing of technologies, pioneering best practices and complementary visions
- Feedback and expertise rigorously selected for their technical quality and innovative dimension

Thank you!

Next e-café: September / October Topic: industrial symbiosis (to be confirmed)

Feedback welcomed: See leo.pasquier@alliance-allice.com

ALLICE e-café #1